
Universal Algebra 2 - Exercises 1

Exercise 1.1. Find a digraph that is locally confluent, but not confluent.

Exercise 1.2. Let E = {(x · y) · z ≈ x · (y · z)} be the theory of semigroups.
Show that D(E) is convergent and conclude that the term rewriting algorithm
works in this case.

Exercise 1.3. Consider E = {f(f(x)) ≈ g(x)}.

(i). Show that D(E) is not convergent and try to understand why the term
rewriting algorithm doesn’t work.

Use the Knuth-Bendix algorithm to find a convergent rewriting system equiv-
alent to E .

(ii). Find a suitable reduction order.

(iii). Find a critical pair of E and check local confluence.

(iv). What are the normal forms of terms?

Exercise 1.4. Consider E = {(x · y) · z ≈ x · (y · z), x · x ≈ x}.

(i). Use the Knuth-Bendix algorithm to expand E by at least two equations.

(ii). Show that the algorithm enters an infinite loop.

Exercise 1.5. Find a convergent system for the theory of groups. (Hint:
think of a normal form and don’t use Knuth-Bendix.)

Exercise 1.6. Show that D(E) is not convergent for any axiomatization E
of the variety of commutative rings (Hint: x + y ≈ y + x). Think of ways
to modify the definitions of convergence, normal forms and reductions and
describe the resulting term rewriting algorithm.
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Universal Algebra 2 - Exercises 2

Exercise 2.1. Show that an abelian algebra A satisfies the term condition

t(x, ū) ≈ t(x, v̄) =⇒ t(y, ū) ≈ t(y, v̄) (2.1)

not only for term operations t, but also for all polynomials p ∈ Pol(A). Also,
show that it is not enough to satisfy (2.1) only in the case where t is a basic
operation of A.

Exercise 2.2. Show that a finite monoid (M, ·, 1) is abelian if and only if
the multiplication · is a commutative group operation. What if M is infinite?

Exercise 2.3. Let A be a 4-element set, fix 0 ∈ A and let (A, +1) ∼= Z4 and
(A, +2) ∼= Z2 × Z2 be the two abelian group operations on A with neutral
element 0. Show that (A, +1, +2) is not an abelian algebra.

Exercise 2.4. Let (R, +, 0, −, ·) be a commutative ring. Recall that congru-
ences α are one-to-one with ideals I, using Iα = [0]α. Show that α centralizes
β if and only if Iα · Iβ = 0. More generally, show that Iα · Iβ = I[α,β].

Exercise 2.5. Show the following properties of the centralizer relation C:

• C(α, β; α) and C(α, β; β)

• Let Γ be a set of congruences. If C(α, β; γ) for all γ ∈ Γ, then
C(α, β; ∧ Γ).
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Universal Algebra 2 - Exercises 3

Exercise 3.1. Consider the Loop (L, ·) with universe Z4 × Z2 given by the
multiplication

(a, b) · (c, d) = (a + c, b + d) unless b = d = 1
(a, 1) · (c, 1) = (a ∗ c, 0) where

∗ 0 1 2 3
0 1 0 2 3
1 0 2 3 1
2 2 3 1 0
3 3 1 0 2

Consider the map f : L → Z2, (a, b) 7→ b, its kernel α and the α-block N of
(0, 0).

• Show that f is a homomorphism and that N is an abelian subloop.

• Show that α is not an abelian congruence, i.e. C(α, α, 0) does not hold.

Exercise 3.2. Prove that the polynomial equivalence problem of nilpotent
rings is solvable in polynomial time. Hint: Look at Example 2.26 in the
script.

Exercise 3.3. We call an algebra k-supernilpotent if every k+1-ary absorbing
polynomial is constant. Consider the algebra (Z9, +, 0, −, fn(x1, . . . , xn) | n ∈
N) where fn(x1, . . . , xn) = 3 · x1 · · · · · xn. Show that this algebra is 2-nilpotent
but no k supernilpotent for any k

3



Universal Algebra 2 - Exercises 4

Exercise 4.1. Recall that a variety is already finitely based, if it has defin-
able principal congruences and finitely many subdirectly irreducibles (up to
isomorphism). Consider commutative rings R that satisfy equation xn ≈ x.

• Show that every subdirecly irreducible such ring is a field of order d,
where d − 1 | n − 1.

• Conclude that HSP(R) is finitely based.

Exercise 4.2. Let A and B be two algebras of finite type on the same domain
with Clo(A) = Clo(B). Show that A is finitely based if and only if B is finitely
based. Is this still true if we do not assume finite type?
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Universal Algebra 2 - Exercises 5

Exercise 5.1. Let A be a relational structure in signature τ . Show that the
following decision problem is equivalent to CSP(A):

• INPUT: a τ structure X

• QUESTION: is there a homomorphism X → A?

Conclude that if there are homomorphisms A → B and B → A, then the
CSPs of A and B are the same.

Exercise 5.2. Consider the computational problem nCOLOR, of coloring a
given graph with n many colors.

• Find a relational structure A such that nCOLOR = CSP(A).

• Find a polynomial time reduction of 3COLOR to nCOLOR and con-
clude that nCOLOR is NP-hard.

Exercise 5.3. Let A be a finite set. Show that a function f : An → A

preserves all relations on A if and only if it is a projection.

Exercise 5.4. Recall the structure A = ({0, 1}; R000, R001, R011, R111) and
that CSP(A) = 3SAT. Show that all polymorphisms of A are projections.
(Hint: what can you pp-define from the relations in A?)
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Universal Algebra 2 - Exercises 6

Exercise 6.1. Let A and B be two homomorphically equivalent relational
structures (A → B and B → A). Show that there is a minion homomorphism
Pol(A) minion−−−−→ Pol(B).

Exercise 6.2. Let A = ({0}, =) and B = ({0, 1}, ≤). Show that A and B
are homomorphically equivalent but that there is no clone homomorphism
Pol(A) clone−−−→ Pol(B). (Hint: show that Pol(B) does not contain a Maltsev
term)

Exercise 6.3. Let R ⊆ An be a relation compatible with a majority poly-
morphisms m : A3 → A.

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x

Denote by πi,j(R) the projections of R to the coordinates i, i (1 ≤ i, j ≤ n).

πi,j = {(ai, aj) | (a1, . . . , an) ∈ R}

Show that R is determined by these binary projections, i.e.

(a1, . . . , an) ∈ R ⇐⇒ ∀i, j (ai, aj) ∈ πi,j(R)

Conclude that R is pp-definable from binary relations.

Exercise 6.4. Find a finite set of relations {R1, . . . , Rn} on the set {0, 1} such
that Pol(R1, . . . , Rn) is the clone generated by the unique majority operation
on {0, 1}.
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Universal Algebra 2 - Exercises 7

Exercise 7.1. Show that all idempotent polymorphisms of K3 = ({0, 1, 2}, ̸=)
are projections using the following steps:

(i). Show that every binary polymorphism is a projection.

For an n-ary polymorphism f and 1 ≤ i ≤ n, define the minors fi(x, y) =
f(x, . . . , x, y, x, . . . , x), where the only y is in the i-th position. Observe that
every fi is a projection.

(ii). Show that fi(x, y) ≈ y holds for at most one i.

(iii). Show that fi(x, y) ≈ x cannot hold for all i. (Hint: try to pp-define the
relation N = {0, 1, 3}3 \ {(0, 0, 0), (1, 1, 1), (2, 2, 2)})

(iv). Show that fi(x, y) = y implies that f is the i-th projection.
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